Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Breast Cancer Res Treat ; 194(2): 475-482, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1866639

ABSTRACT

PURPOSE: The early months of the COVID-19 pandemic led to reduced cancer screenings and delayed cancer surgeries. We used insurance claims data to understand how breast cancer incidence and treatment after diagnosis changed nationwide over the course of the pandemic. METHODS: Using the Optum Research Database from January 2017 to March 2021, including approximately 19 million US adults with commercial health insurance, we identified new breast cancer diagnoses and first treatment after diagnosis. We compared breast cancer incidence and proportion of newly diagnosed patients receiving pre-operative systemic therapy pre-COVID, in the first 2 months of the COVID pandemic and in the later part of the COVID pandemic. RESULTS: Average monthly breast cancer incidence was 19.3 (95% CI 19.1-19.5) cases per 100,000 women and men pre-COVID, 11.6 (95% CI 10.8-12.4) per 100,000 in April-May 2020, and 19.7 (95% CI 19.3-20.1) per 100,000 in June 2020-February 2021. Use of pre-operative systemic therapy was 12.0% (11.7-12.4) pre-COVID, 37.7% (34.9-40.7) for patients diagnosed March-April 2020, and 14.8% (14.0-15.7) for patients diagnosed May 2020-January 2021. The changes in breast cancer incidence across the pandemic did not vary by demographic factors. Use of pre-operative systemic therapy across the pandemic varied by geographic region, but not by area socioeconomic deprivation or race/ethnicity. CONCLUSION: In this US-insured population, the dramatic changes in breast cancer incidence and the use of pre-operative systemic therapy experienced in the first 2 months of the pandemic did not persist, although a modest change in the initial management of breast cancer continued.


Subject(s)
Breast Neoplasms , COVID-19 , Adult , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/therapy , COVID-19/epidemiology , Early Detection of Cancer , Female , Humans , Insurance, Health , Male , Pandemics
2.
Sci Rep ; 12(1): 1891, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671627

ABSTRACT

The COVID-19 pandemic has produced broad clinical manifestations, from asymptomatic infection to hospitalization and death. Despite progress from genomic and clinical epidemiology research, risk factors for developing severe COVID-19 are incompletely understood and identification of modifiable risk factors is desperately needed. We conducted linkage disequilibrium score regression (LDSR) analysis to estimate cross-trait genetic correlation between COVID-19 severity and various polygenic phenotypes. To attenuate the genetic contribution of smoking and BMI, we further conducted sensitivity analyses by pruning genomic regions associated with smoking/BMI and repeating LDSR analyses. We identified robust positive associations between the genetic architecture of severe COVID-19 and both BMI and smoking. We observed strong positive genetic correlation (rg) with diabetes (rg = 0.25) and shortness of breath walking on level ground (rg = 0.28) and novel protective associations with vitamin E (rg = - 0.53), calcium (rg = - 0.33), retinol (rg = - 0.59), Apolipoprotein A (rg = - 0.13), and HDL (rg = - 0.17), but no association with vitamin D (rg = - 0.02). Removing genomic regions associated with smoking and BMI generally attenuated the associations, but the associations with nutrient biomarkers persisted. This study provides a comprehensive assessment of the shared genetic architecture of COVID-19 severity and numerous clinical/physiologic parameters. Associations with blood and plasma-derived traits identified biomarkers for Mendelian randomization studies to explore causality and nominates therapeutic targets for clinical evaluation.


Subject(s)
COVID-19/genetics , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Body Mass Index , COVID-19/etiology , Diabetes Mellitus/genetics , Dyspnea/genetics , Female , Humans , Male , Mendelian Randomization Analysis , Multifactorial Inheritance , Nutrients , Patient Acuity , Phenotype , Regression Analysis , Risk Factors , Smoking/genetics
3.
SELECTION OF CITATIONS
SEARCH DETAIL